Estrada index of dendrimers

G. H. FATH-TABAR, Z. YARAHMADI^a, A. R. ASHRAFI^{*}

Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran ^aDepartment of Mathematics, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, I. R. Iran

Let G be a graph and $\lambda_1, \lambda_2, \dots, \lambda_n$ be the eigenvalues of G. The Estrada index EE(G) of the graph G is defined as the sum of e^{λ_i} , $1 \le i \le n$. In this paper some upper and lower bounds for the Estrada index of a general dendrimer is presented.

(Received December 29, 2009; accepted January 19, 2010)

Keywords: Estrada index, Dendrimer

1. Introduction

Dendrimers are highly branched macromolecules. They are being investigated for possible uses in nanotechnology, gene therapy, and other fields. The nanostar dendrimer is part of a new group of macromolecules that appear to be photon funnels just like artificial antennas. The topological study of these macromolecules is the aim of this article [1-3].

In this paper, the word graph refers to a finite, undirected graph without loops and multiple edges. Let G be a graph and {v₁, ..., v_n} be the set of all vertices of G. The adjacency matrix of G is a 0–1 matrix $A(G) = [a_{ij}]$, where a_{ij} is the number of edges connecting v_i and v_j . The spectrum of a graph G is the set of eigenvalues of A(G), together with their multiplicities. A graph of order n has exactly n real eigenvalues $\lambda_1 \leq \lambda_2 \dots \leq \lambda_n$. The basic properties of graph eigenvalues can be found in the famous book of Cvetkovic, Doob and Sachs [4]. The Estrada index EE(G) of the graph G is defined as the sum of e^{A_i} , $1 \le i \le n$. This quantity, introduced by Ernesto Estrada [5,6] has noteworthy chemical applications [7–16].

Throughout this paper our notation is standard and taken mainly from the standard book of graph theory. A walk is a sequence of graph vertices and graph edges such that the graph vertices and graph edges are adjacent. A closed walk is a walk in which the first and the last vertices are the same. A closed walk has backtracking if, in the closed walk, an edge appears twice in immediate succession.

Fig. 1. The fourth generation of dendrimer molecule D[4].

2. Main results and discussion

Suppose D[n] is the molecular graph of the dendrimer molecule depicted in Fig. 1. In this section, at first some formulae for $\sum_{k=1}^{n} \lambda_{k}^{k}$, $1 \le k \le 10$, are given. Then we apply these values to estimate the Estrada index of dendrimer molecule D[n]. For the sake of completeness, we mention here a well-known theorem of algebraic graph theory⁴ as follows:

Theorem A. Let G be a graph with m edges and t triangles, $A(G) = [a_{ij}]$ and $A^k(G) = [b_{ij}]$. Then the number of walks from u to v in G with length k is b_{uv} . Moreover, Tr(A) = 0, $Tr(A^2) = 2m$ and $Tr(A^3) = 6t$.

We assume that $\lambda_1, \lambda_2, ..., \lambda_N$ are eigenvalues of dendrimer molecule D[n]. A well-known theorem in linear algebra states that $Tr(A^k) = \sum_{i=1}^{N} \lambda_i^k$ = the number of closed walks in D[n]. Since there are no odd closed walks in D[n], one can prove the following theorem:

In the following simple lemma, $\sum_{i=1}^{N} \lambda_i^2$ and $\sum_{i=1}^{N} \lambda_i^2$ are computed.

Lemma 2. $\sum_{t=1}^{N} \lambda_t^2 = 6 \times 2^n - 6$ and $\sum_{t=1}^{N} \lambda_t^4 = 48 \times 2^n - 30$.

Proof. Since $\sum_{i=1}^{n} \lambda_i^{i} = 2m_i$, the first part is trivial. For the proof of second part, we notice that every closed walk of length 4 in the dendrimer molecule D[n] constructed from one edge or a path of length 2. Therefore we must count the following type of sequences:

a)	$v_1v_2v_1v_2v_1;$
b)	$v_1v_2v_3v_2v_1;$
c)	$v_2v_1v_2v_3v_2.$

There are $6 \times 2^{n+1} - 6$ sequences of type (a), $12 \times N - 36 \times 2^n$ sequences of type (b) and $3N-9 \times 2^n$ sequences of type (c), proving the second part of lemma.

Lemma 3. $\sum_{t=1}^{N} \lambda_t^6 = 474 \times 2^n - 372$.

Proof. We apply a similar argument as Lemma 2 to count the number of closed walk of length 6 in D[n]. Such walks constructed from an edge, a path of length 2, a path of length 3, a star S_4 or a hexagon. If v_i 's are distinct vertices of D[n] then we must count the sequences given in Table 1. In this table, we also give the number of walks in each case and we have $\sum_{i=1}^{n} \lambda_i^{-1} = 4/4 \times 2^n - 3/2$, as desired.

Lemma 4. $\sum_{i=1}^{n} \lambda_i^8 = 1176 \times 2^n - 1062$.

Proof. We count the number of closed walk of length 8 in D[n]. In Table 2, we calculate this number for different types of walks. From this table, one can see that $\sum_{i=1}^{n} \frac{2^{n}}{i!} = 1176 \times 2^{n} - 1062$, proving the lemma.

Lemma 5. $\sum_{t=1}^{n} \lambda_t^{10} = 6448 \times 2^n - 6654$.

Proof. By counting the number of closed walks of length 10 in D[n] and Table 3, one can see that $\sum_{i=1}^{n} \lambda_i^{10} = 6448 \times 2^n - 6654$, proving the lemma.

Theorem. There are real numbers $C_1, C_2, ..., C_n, -3 < C_i \le 3$, such that the Estrada index of a dendrimer D[n] is computed as follows:

$$EE(D[n]) = EE(D[n]) = \frac{161291}{20080} 2^{n} -$$

$$\frac{2699919}{604900} + \sum_{t=1}^{n} \frac{\mu_t^{s_2} e^{s_1}}{12^{t}}$$

Proof. The proof is follows from Lemmas 1–5 and Taylor's Theorem.

Core	llary. W	ith the	notation	of	main	theore	em,
1308	161291)	7 ⁿ	2399919		< FI	$F(\mathbf{C})$	<
1210	28380 /	2	604800	_		$-(\mathbf{C}_n)$	
6 8 8 8	161291	💁 💶 🖁	899919				
121	28880/		604800				

Table 1. The walks of length 6.

Туре	Sequence	No
А	$v_1v_2v_1v_2v_1v_2v_1$	12.2 ⁿ -6
В	$v_1v_2v_1v_2v_3v_2v_1$	$42 V -126.2^{n}$
С	$v_2v_1v_2v_1v_2v_3v_2$	42 V -126.2 ⁿ
D	$v_1v_2v_3v_4v_3v_2v_1$	$60 V -240.2^{n}$
Е	$v_2v_1v_2v_3v_4v_3v_2$	$24 V - 96.2^{n}$
F	$v_1v_2v_3v_2v_4v_2v_1$	$6 V - 18.2^{n}$
G	$v_2v_1v_2v_4v_2v_3v_2$	$6 V - 18.2^{n}$

Table 2. The walks of length 8.

Туре	Sequence	No
А	$v_1v_2v_1v_2v_1v_2v_1v_2v_1v_2v_1$	$12.2^{n}-6$
В	$v_1v_2v_1v_2v_3v_2v_3v_2v_1$	$42 V - 126.2^{n}$
С	$v_2v_1v_2v_3v_2v_3v_2v_1v_2$	$42 V - 126.2^{n}$
D	$v_1v_2v_1v_2v_3v_2v_4v_2v_1$	$60 V - 240.2^{n}$
Е	$v_2v_1v_2v_1v_2v_3v_2v_4v_2$	$120 V - 480.2^{n}$
F	$v_1v_2v_1v_2v_3v_2v_4v_2v_1$	$36 V - 108.2^{n}$
G	$v_2v_1v_2v_1v_2v_3v_2v_4v_2$	$36 V - 108.2^{n}$
Н	$v_1v_2v_3v_4v_5v_4v_3v_2v_1$	$24 V - 108.2^{n}$
Ι	$v_2v_1v_2v_3v_4v_5v_4v_3v_2$	$48 V - 216.2^{n}$
J	$v_3v_2v_1v_2v_3v_4v_5v_2v_3$	$24 V - 108.2^{n}$
Κ	$v_1v_2v_3v_4v_3v_5v_3v_2v_1$	$12 V - 48.2^{n}$
L	$v_2v_1v_2v_3v_4v_3v_5v_3v_2$	$24 V - 96.2^{n}$
М	$V_3V_2V_1V_2V_3V_4V_3V_5V_3$	$36 V - 144.2^{n-1}$
Ν	V ₄ V ₃ V ₅ V ₃ V ₂ V ₁ V ₂ V ₃ V ₄	$24 V - 96.2^{n}$

Table 3. The walks of length 10.

Туре	Sequence	No
А	$v_1v_2v_1v_2v_1v_2v_1v_2v_1v_2v_1v_2v_1$	$12.2^{n} - 6$
В	$v_1v_2v_1v_2v_3v_2v_3v_2v_1v_2v_1$	$90 V - 270.2^n$
С	$v_2v_1v_2v_3v_2v_3v_2v_1v_2v_2v_1v_2v_2v_2v_2v_2v_2v_2v_2v_2v_2v_2v_2v_2v$	$90 V - 270.2^n$
D	$v_1v_2v_1v_2v_3v_2v_3v_4v_2v_2v_1$	$216 V - 864.2^n$
Е	$v_2v_1v_2v_1v_2v_3v_2v_3v_4v_3v_2$	540 V - 2160.2 ⁿ
F	$v_1v_2v_3v_2v_3v_2v_4v_2v_3v_2v_4v_2v_3v_2v_1$	$150 V - 450.2^n$
G	$v_2v_1v_2v_1v_2v_3v_2v_3v_2v_4v_2$	$150 V - 450.2^n$
Н	$v_1v_2v_3v_4v_5v_4v_5v_4v_3v_2v_1$	$168 V - 756.2^n$
Ι	$v_2v_1v_2v_1v_2v_3v_4v_5v_4v_3v_2$	$288 V - 1296.2^n$
J	$v_3v_2v_1v_2v_3v_4v_5v_4v_3v_4v_3$	$192 V - 864.2^{n}$
K	$v_1v_2v_3v_4v_3v_4v_3v_5v_3v_2v_1$	$96 V - 384.2^n$
L	$v_2v_1v_2v_1v_2v_3v_4v_3v_5v_3v_2$	$360 V - 480.2^n$
М	$v_3v_2v_1v_2v_3v_4v_3v_5v_3v_4v_3$	$216 V - 864.2^{n-1}$
N	$v_4 v_3 v_4 v_3 v_5 v_3 v_2 v_1 v_2 v_3 v_4$	$240 V - 960.2^n$
0	$v_1v_2v_3v_4v_5v_6v_5v_4v_3v_2v_1$	$48 V - 240.2^n$
Р	$v_2v_1v_2v_3v_4v_5v_6v_5v_4v_3v_2$	$96 V - 4802^n$
Q	$V_3 v_2 v_1 v_2 v_3 v_4 v_5 v_6 v_5 v_4 v_3$	$96 V - 480.2^n$
R	$v_1v_2v_3v_4v_5v_4v_6v_4v_3v_2v_1$	$24 V - 108.2^n$
S	$v_2v_1v_2v_3v_4v_5v_4v_6v_4v_3v_2$	$48 V - 216.2^n$
Т	$v_3v_2v_1v_2v_3v_4v_5v_4v_6v_4v_3$	$48 V - 216.2^{n}$
U	$v_4 v_3 v_2 v_1 v_2 v_3 v_4 v_5 v_4 v_6 v_4$	$72 V - 324.2^{n}$
V	$v_5v_4v_6v_4v_3v_2v_1v_2v_3v_4v_5$	$48 V - 216.2^n$
W	$v_1v_2v_3v_6v_3v_4v_5v_4v_3v_2v_1$	$48 V - 192.2^{n}$
Х	$v_2v_1v_2v_3v_4v_5v_4v_3v_6v_3v_2$	$72 V - 216.2^{n}$
Y	$v_3v_2v_1v_2v_3v_4v_5v_4v_3v_6v_3$	$72 V - 324.2^{n}$
Z	$v_6v_3v_4v_5v_4v_3v_2v_1v_2v_3v_6$	$24 V - 108.2^{n}$
AA	$v_1v_2v_3v_4v_3v_6v_3v_2v_5v_2v_1$	$24 V - 104.2^{n}$
AB	$v_2v_1v_2v_3v_4v_3v_6v_3v_2v_5v_2$	$72 V - 216.2^{n}$

References

- M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Indian J. Chem. 47A, 1503 (2008).
- [2] A. R. Ashrafi, M. Mirzargar, Indian J. Chem. 47A, 538 (2008).
- [3] A. R. Ashrafi, H. Saati, J. Comput. Theor. Nanosci. 5, 681 (2008).
- [4] D. Cvetkovic, M. Doob, H. Sachs, Spectra of Graphs-Theory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.
- [5] E. Estrada, Chem. Phys. Lett. **319**, 713 (2000).
- [6] E. Estrada, Bioinformatics 18, 697 (2002).
- [7] G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman, Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.).
- [8] T. Aleksic, I. Gutman, M. Petrovic, Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.) 134, 33 (2007).
- [9] I. Gutman, A. Graovac, Chem. Phys. Letters 436, 294 (2007).
- [10] I. Gutman, S. Radenkovic, A. Graovac, D. Plavsic, Chem. Phys. Letters 446, 233 (2007).
- [11] I. Gutman, S. Radenkovic, B. Furtula, T. Mansour, M. Schork, J. Serb. Chem. Soc. 72, 1321 (2007).
- [12] I. Gutman, B. Furtula, B. Glisic, V. Markovic, A. Vesel, Indian J. Chem. 46A, 723 (2007).
- [13] I. Gutman, S. Radenkovic, Kragujevac J. Science 29, 67 (2007).
- [14] I. Gutman, S. Radenkovic, Z. Naturforschung 62a, 254 (2007).
- [15] H. Deng, Match Commun. Math. Comput. Chem. 62, 599 (2009).
- [16] H. Deng, Match Commun. Math. Comput. Chem. 62, 607 (2009).

*Corresponding author: Ashrafi@kashanu.ac.ir