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Estrada index of dendrimers

G. H. FATH-TABAR, Z. YARAHMADI’, A. R. ASHRAFI"

Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran
®Department of Mathematics, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, 1. R. Iran

Let G be a graph and A4, Ay, ... Ay be the eigenvalues of G. The Estrada index EE(G) of the graph G is defined as the sum
of e¥, 1<i<n. Inthis paper some upper and lower bounds for the Estrada index of a general dendrimer is presented.
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1. Introduction

Dendrimers are highly branched macromolecules.
They are being investigated for possible uses in
nanotechnology, gene therapy, and other fields. The
nanostar dendrimer is part of a new group of
macromolecules that appear to be photon funnels just like
artificial antennas. The topological study of these
macromolecules is the aim of this article [1-3].

In this paper, the word graph refers to a finite,
undirected graph without loops and multiple edges. Let G
be a graph and {vi, ..., v,} be the set of all vertices of G.
The adjacency matrix of G is a 0—1 matrix A(G) = [a;],
where a;; is the number of edges connecting v; and v;. The
spectrum of a graph G is the set of eigenvalues of A(G),
together with their multiplicities. A graph of order n has
exactly n real eigenvalues A; < A ... < A,. The basic
properties of graph eigenvalues can be found in the
famous book of Cvetkovic, Doob and Sachs [4].

The Estrag,a index EE(G) of the graph G is defined as
the sum of €™, 1 < i < n. This quantity, introduced by
Ernesto  Estrada [5,6] has noteworthy chemical
applications [7—-16 ].

Throughout this paper our notation is standard and
taken mainly from the standard book of graph theory. A
walk is a sequence of graph vertices and graph edges such
that the graph vertices and graph edges are adjacent. A
closed walk is a walk in which the first and the last
vertices are the same. A closed walk has backtracking if,
in the closed walk, an edge appears twice in immediate
succession.
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Fig. 1. The fourth generation of dendrimer molecule D[4].
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2. Main results and discussion

Suppose D[n] is the molecular graph of the dendrimer
molecule depicted in Fig. 1. In this section, at first some
formulae for EE}-:LA?’ 1 <k < 10, are given. Then we
apply these values to estimate the Estrada index of
dendrimer molecule D[n]. For the sake of completeness,
we mention here a well-known theorem of algebraic graph
theory® as follows:

Theorem A. Let G be a graph with m edges and t
triangles, A(G) =[a;] and AXG) =[b;]. Then the number of
walks from u to v in G with length k is b,,. Moreover,
Tr(A) = 0, Tr(A%) = 2m and Tr(A?) = 6t.

We assume that A;, A, ..., Ay are eigenvalues of
dendrimer molecule D[n]. A well-known theorem in linear
algebra states that Tr(AY) = E‘;‘".l.zl? = the number of

closed walks in D[n]. Since there are no odd closed walks
in D[n], one can prove the following theorem:

Lemmal. ZiL, A%%1m g,
In the following
E‘Llﬁf and EEL:L'?"? are computed.
“Lemma 2. I A m G X2 = Gand
‘?.li;r'g L ‘1’& }'; EH - E":tl
Proof. Since E‘?.:L.zﬁ m 21, the first part is trivial.

For the proof of second part, we notice that every closed
walk of length 4 in the dendrimer molecule D[n]
constructed from one edge or a path of length 2. Therefore
we must count the following type of sequences:

simple lemma,

a) ViVaViVaVvy;
b) ViVaV3VaVy;
C) VoV 1VoV3Vs.

There are 6x2™"' — 6 sequences of type (a), 12xN —
36x2" sequences of type (b) and 3N-9x2" sequences of
type (c), proving the second part of lemma.

Lemma 3. Zig, AT m 474 % 2" — 372,

Proof. We apply a similar argument as Lemma 2 to
count the number of closed walk of length 6 in D[n]. Such
walks constructed from an edge, a path of length 2, a path
of length 3, a star S, or a hexagon. If vj's are distinct
vertices of D[n] then we must count the sequences given in
Table 1. In this table, we also give the number of walks in

each case and we have Efr.lﬂr? CIETE L Vi
as desired.

Lemma 4. g, AT m 1176 ¥ 2® — 1062.

Proof. We count the number of closed walk of length
8 in D[n]. In Table 2, we calculate this number for
different types of walks. From this table, one can see that

E?-g_i;r? m L1176 ¥ &% = 1062, proving the lemma.

Lemma 5. Zlg, A} m 6448 % 2" — 6654

Proof. By counting the number of closed walks of
length 10 in D[n] and Table 3, one can see that

Zh, AF m gad4G ¢ 2% -

Theorem. There are real numbers C;, C,, ..., C,, -3 <
C; < 3, such that the Estrada index of a dendrimer D[n] is
computed as follows:

EE(D[n]) = EE(D[n]) =
o gl

160291 4y
P s &
iﬁi’?ﬁ.’i"

EOASTD Sowam T Ef'l 1z

Proof. The proof is follows from Lemmas 1-5 and
Taylor's Theorem.

Corollary. With the notation of main theorem,

13'3'5 lﬁla?l SIFPFLR
1 'Eﬁ + e £3390 : N EE(G) <
[ “a“‘ | Le1a ﬁ.} oo _ 3ITRFLR
= E*WE"}I'I'
Table 1. The walks of length 6.

Type Sequence No

A VIVaV VoV VoV | 12.2°-6

B V1V2VVaV3VoVy 42|V|-1262n

C VoV VoV iV ViV) 42|V|—1262n

D V1V3V3V4V3VoV) 60|V|—2402n

E VoV VaV3VyaV3V) 24|V| -96.2"

F ViVaVaVavavavy | 6]V —18.2"

G VoViVaVaVavaVa | 6]V] —18.2"

Table 2. The walks of length 8.

Type Sequence No
A VIVaVIVaViVavivavy | 12,27 -6
B VIVaVIVaVaVavsvavy | 42|V] = 126.2"
C VaVIVaVaVaVaVaviva | 42|V] = 126.2"
D VIVaViVaVaVavevavy | 60[V] — 240.2"
E VaVIVaViVaVaVaves | 120[V] — 480.2"
F VIVaVIVaV3VavaVavy | 36|V] - 108.2"
G VaVIVaViVaVaVavaVs | 36]V] = 108.2"
H ViVaV3VaVsVaVsVovy | 24[V] —108.2"
1 VaViVaV3VaVsVavsva | 48|V] —216.2"
J V3VaV 1 VaV3VaVsVovy | 24[V] —108.2"
K VIVaV3VaV3Vsvavavy | 12|V] - 48.2"
L VoV VaV3VaVsVsVavy | 24[V] - 96.2"
M V3VaViVaVaVavaVsvy | 36[V] — 144.2™"
N V4V3VsV3VaV VavaVy | 24[V] - 96.2"

6654, proving thelemma.
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Table 3. The walks of length 10.
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Type | Sequence No

A VIVaVIVaViVaV Vav VoV | 122" — 6

B L|V2V1V2V3V2V3V2V]V2V 90|V| —270.2"
C i/2VIVZV3sz3vzv1vzv1V 90|V| —270.2"
D i/lV2V1V2V3V2V3V4V2V2V 216|V| —864.2"
E ;2V1V2V1V2V3V2V3V4V3V 540|V| - 2160.2"
F i/lV2V3V2V3V2V4V2V3V2V 150|V| —450.2"
G \]/2V1V2V1V2V3V2V3V2V4V 150|V| — 450.2"
H iI1V2V3V4V5V4V5V4V3V2V 168|V| — 756.2"
I \]/2V1V2V1V2V3V4V5V4V3V 288|V| - 1296.2"
J i/3vzv1vzv3v4v5v4v3V4V 192|V] — 864.2"
K i/lvzv3v4v3v4v3v5v3vzv 96|V| —384.2"
L i/zv]vzv]vzv3v4v3v5v3v 360[V| - 480.2"
M i@vzvlvzv;vwwsvww 216|V| — 864.2""
N i/4V3V4V3V5V3V2V1V2V3V 240|V| - 960.2"
(0] j/lV2V3V4V5V6V5V4V3V2V 48|V| —240.2"

P \]/2V1V2V3V4V5V6V5V4V3V 96|V| — 4802"

Q i/3V2V1V2V3V4V5V5V5V4V 96|V| — 480.2"
R i1V2V3V4V5V4V6V4V3V2V 24|V|-108.2"
S \]/2V1V2V3V4V5V4V6V4V3V 48|V|-216.2"
T i/3vzv1vzv3v4v5v4v6v4v 48|V|-216.2"
U i’4V3V2V]V2V3V4V5V4V6V 72|V|-324.2"
A% A\‘/5v4v6v4v3vzv]v2v3v4v 48|V|-216.2"
w i/|V2V3V6V3V4V5V4V3V2V 48|V| - 192.2"
X ;2V1V2V3V4V5V4V3V6V3V 72|V|-216.2"
Y i/3V2V1V2V3V4V5V4V3V(,V 72|V|-324.2"
Z i/GV3V4V5V4V3V2V1V2V3V 24|V|-108.2"
AA f/1V2V3V4V3V6V3V2V5V2V 24|V| - 104.2"
AB \]/2V1V2V3V4V3V6V3V2V5V 72|V|-216.2"
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