Estrada index of dendrimers

G. H. FATH-TABAR, Z. YARAHMADI ${ }^{\text {a }}$, A. R. ASHRAFI*
Department of Mathematics, Faculty of Science, University of Kashan, Kashan 87317-51167, I. R. Iran
${ }^{a}$ Department of Mathematics, Faculty of Science, Islamic Azad University, Khorramabad Branch, Khorramabad, I. R. Iran

Let G be a graph and $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}$ be the eigenvalues of G. The Estrada index $E E(G)$ of the graph G is defined as the sum of $\boldsymbol{e}^{d_{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$. In this paper some upper and lower bounds for the Estrada index of a general dendrimer is presented.
(Received December 29, 2009; accepted January 19, 2010)
Keywords: Estrada index, Dendrimer

1. Introduction

Dendrimers are highly branched macromolecules. They are being investigated for possible uses in nanotechnology, gene therapy, and other fields. The nanostar dendrimer is part of a new group of macromolecules that appear to be photon funnels just like artificial antennas. The topological study of these macromolecules is the aim of this article [1-3].

In this paper, the word graph refers to a finite, undirected graph without loops and multiple edges. Let G be a graph and $\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}$ be the set of all vertices of G . The adjacency matrix of G is a $0-1$ matrix $\mathrm{A}(\mathrm{G})=\left[\mathrm{a}_{\mathrm{ij}}\right]$, where $a_{i j}$ is the number of edges connecting v_{i} and v_{j}. The spectrum of a graph G is the set of eigenvalues of $A(G)$, together with their multiplicities. A graph of order n has exactly n real eigenvalues $\lambda_{1} \leq \lambda_{2} \ldots \leq \lambda_{\mathrm{n}}$. The basic properties of graph eigenvalues can be found in the famous book of Cvetkovic, Doob and Sachs [4].

The Estrada index $\mathrm{EE}(\mathrm{G})$ of the graph G is defined as the sum of $e^{A_{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$. This quantity, introduced by Ernesto Estrada $[5,6]$ has noteworthy chemical applications [7-16].

Throughout this paper our notation is standard and taken mainly from the standard book of graph theory. A walk is a sequence of graph vertices and graph edges such that the graph vertices and graph edges are adjacent. A closed walk is a walk in which the first and the last vertices are the same. A closed walk has backtracking if, in the closed walk, an edge appears twice in immediate succession.

Fig. 1. The fourth generation of dendrimer molecule $D[4]$.

2. Main results and discussion

Suppose $\mathrm{D}[\mathrm{n}]$ is the molecular graph of the dendrimer molecule depicted in Fig. 1. In this section, at first some formulae for $\sum_{i n g} \lambda_{i}^{k}, 1 \leq \mathrm{k} \leq 10$, are given. Then we apply these values to estimate the Estrada index of dendrimer molecule $\mathrm{D}[\mathrm{n}]$. For the sake of completeness, we mention here a well-known theorem of algebraic graph theory ${ }^{4}$ as follows:

Theorem A. Let G be a graph with m edges and t triangles, $A(G)=\left[a_{i j}\right]$ and $A^{k}(G)=\left[b_{i j}\right]$. Then the number of walks from u to v in G with length k is b_{uv}. Moreover, $\operatorname{Tr}(\mathrm{A})=0, \operatorname{Tr}\left(\mathrm{~A}^{2}\right)=2 \mathrm{~m}$ and $\operatorname{Tr}\left(\mathrm{A}^{3}\right)=6 \mathrm{t}$.

We assume that $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{N}}$ are eigenvalues of dendrimer molecule $\mathrm{D}[\mathrm{n}]$. A well-known theorem in linear algebra states that $\operatorname{Tr}\left(\mathrm{A}^{\mathrm{k}}\right)=\mathrm{NT}_{\mathrm{H}} \lambda_{f}^{k}=$ the number of closed walks in $\mathrm{D}[\mathrm{n}]$. Since there are no odd closed walks in $\mathrm{D}[\mathrm{n}]$, one can prove the following theorem:

In the following simple lemma, $\sum_{2} \mathrm{~N}_{1} \lambda_{1}^{2}$ and $\mathrm{N}_{\mathrm{N}}^{\mathrm{N}} \lambda_{1}^{4}$ are computed.

Proof. Since $\sum_{i=1} \lambda_{i}=2 m$, the first part is trivial. For the proof of second part, we notice that every closed walk of length 4 in the dendrimer molecule $D[n]$ constructed from one edge or a path of length 2 . Therefore we must count the following type of sequences:
a) $\quad v_{1} v_{2} v_{1} v_{2} v_{1}$;
b) $\quad \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{v}_{1}$;
c) $\quad V_{2} V_{1} V_{2} V_{3} v_{2}$.

There are $6 \times 2^{\mathrm{n+1}}-6$ sequences of type (a), $12 \times \mathrm{N}-$ $36 \times 2^{\text {n }}$ sequences of type (b) and $3 \mathrm{~N}-9 \times 2^{\mathrm{n}}$ sequences of type (c), proving the second part of lemma.

Lemma 3. $\sum_{i=1}^{n} \lambda_{i}^{6}=474 \times 2^{n}-372$.

Proof. We apply a similar argument as Lemma 2 to count the number of closed walk of length 6 in D[n]. Such walks constructed from an edge, a path of length 2, a path of length 3, a star S_{4} or a hexagon. If v_{i} 's are distinct vertices of $\mathrm{D}[\mathrm{n}]$ then we must count the sequences given in Table 1. In this table, we also give the number of walks in
 as desired.

Lemma 4. $\sum^{n}{ }_{1} \lambda^{9}=1176 \times 2^{n}-1062$.

Proof. We count the number of closed walk of length 8 in $\mathrm{D}[\mathrm{n}]$. In Table 2, we calculate this number for different types of walks. From this table, one can see that $\sum_{i=1}^{n} \lambda_{6}^{9}=1176 \times 2^{n}-1062_{0}$ proving the lemma.

Lemma 5. $\sum_{i=1}^{\operatorname{nn}} \lambda_{t}^{10}=6448 \times 2^{n}-6654$.
Proof. By counting the number of closed walks of length 10 in $\mathrm{D}[\mathrm{n}]$ and Table 3, one can see that $\sum_{i=1}^{n} \lambda_{i}^{10}=6448 \times 2^{2}-6654_{i}$ proving thelemma,

Theorem. There are real numbers $\mathrm{C}_{1}, \mathrm{C}_{2}, \ldots, \mathrm{C}_{\mathrm{n}},-3<$ $\mathrm{C}_{\mathrm{i}} \leq 3$, such that the Estrada index of a dendrimer $\mathrm{D}[\mathrm{n}]$ is computed as follows:

Proof. The proof is follows from Lemmas 1-5 and Taylor's Theorem.

Corollary. With the notation of main theorem,
 $\left(\begin{array}{cc}8^{8} 2^{64} & 161291 \\ 121 & \left.\begin{array}{c}18989\end{array}\right) 2^{n}-\frac{289 P 919}{604890} .\end{array}\right.$

Table 1. The walks of length 6.

Type	Sequence	No
A	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1}$	12.2^{n}-6
B	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$42\|\mathrm{~V}\|-126.2^{\mathrm{n}}$
C	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2}$	$42\|\mathrm{~V}\|-126.2^{\text {n }}$
D	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$60\|\mathrm{~V}\|-240.2^{\text {n }}$
E	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2}$	$24\|\mathrm{~V}\|-96.2^{\text {n }}$
F	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$6\|\mathrm{~V}\|-18.2^{\mathrm{n}}$
G	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2}$	$6\|\mathrm{~V}\|-18.2^{\mathrm{n}}$

Table 2. The walks of length 8.

Type	Sequence	No
A	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$12.2^{\mathrm{n}}-6$
B	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$42\|\mathrm{~V}\|-126.2^{\mathrm{n}}$
C	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2}$	$42\|\mathrm{~V}\|-126.2^{\mathrm{n}}$
D	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$60\|\mathrm{~V}\|-240.2^{\mathrm{n}}$
E	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2}$	$120\|\mathrm{~V}\|-480.2^{\text {n }}$
F	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$36\|\mathrm{~V}\|-108.2^{\mathrm{n}}$
G	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2}$	$36\|\mathrm{~V}\|-108.2^{\mathrm{n}}$
H	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$24\|\mathrm{~V}\|-108.2^{\mathrm{n}}$
I	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2}$	$48\|\mathrm{~V}\|-216.2^{\mathrm{n}}$
J	$\mathrm{V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{2} \mathrm{~V}_{3}$	$24\|\mathrm{~V}\|-108.2^{\mathrm{n}}$
K	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1}$	$12\|\mathrm{~V}\|-48.2^{\mathrm{n}}$
L	$\mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{3} \mathrm{~V}_{2}$	$24\|\mathrm{~V}\|-96.2^{\mathrm{n}}$
M	$V_{3} V_{2} V_{1} V_{2} V_{3} V_{4} V_{3} V_{5} V_{3}$	$36\|\mathrm{~V}\|-144.2^{\mathrm{n}-1}$
N	$\mathrm{V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4}$	$24\|\mathrm{~V}\|-96.2^{\text {n }}$

Table 3. The walks of length 10.

Type	Sequence	No	
A	$\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}$	$12.2^{\text {n }}-6$	
B	$\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}$	$90\|\mathrm{~V}\|-270.2^{\mathrm{n}}$	
C	$\begin{aligned} & V_{2} V_{1} v_{2} v_{3} v_{2} V_{3} v_{2} V_{1} v_{2} V_{1} V \\ & 2 \end{aligned}$	$90\|\mathrm{~V}\|-270.2^{\text {n }}$	
D	$\mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{~V}_{2} \mathrm{v}_{2} \mathrm{v}$	$216\|\mathrm{~V}\|-864.2^{\text {n }}$	
E	$\mathrm{v}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}$	$540\|\mathrm{~V}\|-2160.2^{\text {n }}$	
F	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{v}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}$ 1	$150\|\mathrm{~V}\|-450.2^{\mathrm{n}}$	
G	$\begin{aligned} & \mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{4} \mathrm{~V} \\ & 2 \end{aligned}$	$150\|\mathrm{~V}\|-450.2^{\mathrm{n}}$	
H	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}$	$168\|\mathrm{~V}\|-756.2^{\text {n }}$	
I	$\mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{v}_{4} \mathrm{~V}_{3} \mathrm{v}$ 2	$288\|\mathrm{~V}\|-1296.2^{\text {n }}$	
J	$\begin{aligned} & \mathrm{V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V} \\ & 3 \end{aligned}$	192\|V	-864.2 ${ }^{\text {n }}$
K	$\mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{v}_{4} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{v}_{5} \mathrm{~V}_{3} \mathrm{v}_{2} \mathrm{~V}$	$96\|\mathrm{~V}\|-384.2^{\text {n }}$	
L	$\begin{aligned} & \mathrm{V}_{2} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{3} \mathrm{~V} \\ & 2 \end{aligned}$	$360\|\mathrm{~V}\|-480.2^{\mathrm{n}}$	
M	$\begin{aligned} & \mathrm{V}_{3} \mathrm{v}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{v}_{3} \mathrm{~V}_{4} \mathrm{~V} \\ & 3 \end{aligned}$	$216\|\mathrm{~V}\|-864.2^{\mathrm{n}-1}$	
N	$\begin{aligned} & \mathrm{V}_{4} \mathrm{v}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{5} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V} \\ & 4 \end{aligned}$	$240\|\mathrm{~V}\|-960.2^{\text {n }}$	
O	$\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{6} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}$ 1	$48\|\mathrm{~V}\|-240.2^{\text {n }}$	
P	$\begin{aligned} & \mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{6} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V} \\ & 2 \end{aligned}$	$96\|\mathrm{~V}\|-4802^{\text {n }}$	
Q	$\begin{aligned} & \mathrm{V}_{3} \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{~V}_{6} \mathrm{~V}_{5} \mathrm{v}_{4} \mathrm{~V} \\ & 3 \end{aligned}$	$96\|\mathrm{~V}\|-480.2^{\text {n }}$	
R	$\begin{aligned} & \mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{6} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V} \\ & 1 \end{aligned}$	$24\|\mathrm{~V}\|-108.2^{\text {n }}$	
S	$\begin{aligned} & \mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{6} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V} \\ & 2 \end{aligned}$	$48\|\mathrm{~V}\|-216.2^{\text {n }}$	
T	$\begin{aligned} & \mathrm{V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{~V}_{6} \mathrm{~V}_{4} \mathrm{~V} \\ & 3 \end{aligned}$	$48\|\mathrm{~V}\|-216.2^{\text {n }}$	
U	$\mathrm{v}_{4} \mathrm{v}_{3} \mathrm{~V}_{2} \mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{v}_{4} \mathrm{~V}_{6} \mathrm{~V}$ 4	$72\|\mathrm{~V}\|-324.2^{\text {n }}$	
V	$\begin{aligned} & \mathrm{V}_{5} \mathrm{v}_{4} \mathrm{~V}_{6} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V} \\ & 5 \end{aligned}$	$48\|\mathrm{~V}\|-216.2^{\text {n }}$	
W	$\mathrm{v}_{1} \mathrm{v}_{2} \mathrm{~V}_{3} \mathrm{~V}_{6} \mathrm{~V}_{3} \mathrm{v}_{4} \mathrm{~V}_{5} \mathrm{~V}_{4} \mathrm{v}_{3} \mathrm{~V}_{2} \mathrm{~V}$ 1	$48\|\mathrm{~V}\|-192.2^{\text {n }}$	
X	$\begin{aligned} & \mathrm{v}_{2} \mathrm{v}_{1} \mathrm{~V}_{2} \mathrm{v}_{3} \mathrm{v}_{4} \mathrm{v}_{5} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{v}_{6} \mathrm{~V}_{3} \mathrm{v} \\ & 2 \end{aligned}$	$72\|\mathrm{~V}\|-216.2^{\text {n }}$	
Y	$\begin{aligned} & V_{3} V_{2} V_{1} V_{2} V_{3} V_{4} V_{5} V_{4} V_{3} V_{6} V \\ & 3 \end{aligned}$	$72\|\mathrm{~V}\|-324.2^{\mathrm{n}}$	
Z	$\mathrm{V}_{6} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{5} \mathrm{v}_{4} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}$ 6	$24\|\mathrm{~V}\|-108.2^{\text {n }}$	
AA	$\begin{aligned} & \mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{6} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{5} \mathrm{~V}_{2} \mathrm{~V} \\ & 1 \end{aligned}$	$24\|\mathrm{~V}\|-104.2^{\text {n }}$	
AB	$\begin{aligned} & \mathrm{V}_{2} \mathrm{~V}_{1} \mathrm{~V}_{2} \mathrm{~V}_{3} \mathrm{~V}_{4} \mathrm{~V}_{3} \mathrm{~V}_{6} \mathrm{~V}_{3} \mathrm{~V}_{2} \mathrm{~V}_{5} \mathrm{~V} \\ & 2 \end{aligned}$	$72\|\mathrm{~V}\|-216.2^{\text {n }}$	

References

[1] M. H. Khalifeh, H. Yousefi-Azari, A. R. Ashrafi, Indian J. Chem. 47A, 1503 (2008).
[2] A. R. Ashrafi, M. Mirzargar, Indian J. Chem. 47A, 538 (2008).
[3] A. R. Ashrafi, H. Saati, J. Comput. Theor. Nanosci. 5, 681 (2008).
[4] D. Cvetkovic, M. Doob, H. Sachs, Spectra of GraphsTheory and Application, third ed., Johann Ambrosius Barth Verlag, Heidelberg, Leipzig, 1995.
[5] E. Estrada, Chem. Phys. Lett. 319, 713 (2000).
[6] E. Estrada, Bioinformatics 18, 697 (2002).
[7] G. H. Fath-Tabar, A. R. Ashrafi, I. Gutman, Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.).
[8] T. Aleksic, I. Gutman, M. Petrovic, Bull. Acad. Serb. Sci. Arts (Cl. Math. Natur.) 134, 33 (2007).
[9] I. Gutman, A. Graovac, Chem. Phys. Letters 436, 294 (2007).
[10] I. Gutman, S. Radenkovic, A. Graovac, D. Plavsic, Chem. Phys. Letters 446, 233 (2007).
[11] I. Gutman, S. Radenkovic, B. Furtula, T. Mansour, M. Schork, J. Serb. Chem. Soc. 72, 1321 (2007).
[12] I. Gutman, B. Furtula, B. Glisic, V. Markovic, A. Vesel, Indian J. Chem. 46A, 723 (2007).
[13] I. Gutman, S. Radenkovic, Kragujevac J. Science 29, 67 (2007).
[14] I. Gutman, S. Radenkovic, Z. Naturforschung 62a, 254 (2007).
[15] H. Deng, Match Commun. Math. Comput. Chem. 62, 599 (2009).
[16] H. Deng, Match Commun. Math. Comput. Chem. 62, 607 (2009).

[^0]
[^0]: "Corresponding author: Ashrafi@kashanu.ac.ir

