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Let G be a graph and λ1, λ2, … λn be the eigenvalues of G. The Estrada index EE(G) of the graph G is defined as the sum 
of , 1 ≤ i ≤ n. In this paper some upper and lower bounds for the Estrada index of a general dendrimer is presented. 
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1. Introduction 
 
Dendrimers are highly branched macromolecules. 

They are being investigated for possible uses in 
nanotechnology, gene therapy, and other fields. The 
nanostar dendrimer is part of a new group of 
macromolecules that appear to be photon funnels just like 
artificial antennas. The topological study of these 
macromolecules is the aim of this article [1-3]. 

In this paper, the word graph refers to a finite, 
undirected graph without loops and multiple edges. Let G 
be a graph and {v1, ..., vn} be the set of all vertices of G. 
The adjacency matrix of G is a 0−1 matrix A(G) = [aij], 
where aij is the number of edges connecting vi and vj. The 
spectrum of a graph G is the set of eigenvalues of A(G), 
together with their multiplicities. A graph of order n has 
exactly n real eigenvalues λ1 ≤ λ2 … ≤ λn. The basic 
properties of graph eigenvalues can be found in the 
famous book of Cvetkovic, Doob and Sachs [4]. 

 
 
The Estrada index EE(G) of the graph G is defined as 

the sum of , 1 ≤ i ≤ n. This quantity, introduced by 
Ernesto Estrada [5,6] has noteworthy chemical 
applications [7−16 ]. 

Throughout this paper our notation is standard and 
taken mainly from the standard book of graph theory. A 
walk is a sequence of graph vertices and graph edges such 
that the graph vertices and graph edges are adjacent. A 
closed walk is a walk in which the first and the last 
vertices are the same. A closed walk has backtracking if, 
in the closed walk, an edge appears twice in immediate 
succession. 
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Fig. 1. The fourth generation of dendrimer molecule D[4]. 
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2. Main results and discussion 
 
Suppose D[n] is the molecular graph of the dendrimer 

molecule depicted in Fig. 1. In this section, at first some 
formulae for , 1 ≤ k ≤ 10, are given. Then we 
apply these values to estimate the Estrada index of 
dendrimer molecule D[n]. For the sake of completeness, 
we mention here a well-known theorem of algebraic graph 
theory4 as follows: 

Theorem A. Let G be a graph with m edges and t 
triangles, A(G) =[aij] and Ak(G) =[bij]. Then the number of 
walks from u to v in G with length k is buv. Moreover, 
Tr(A) = 0, Tr(A2) = 2m and Tr(A3) = 6t. 

We assume that λ1, λ2, …, λN are eigenvalues of 
dendrimer molecule D[n]. A well-known theorem in linear 
algebra states that Tr(Ak) =  = the number of 
closed walks in D[n]. Since there are no odd closed walks 
in D[n], one can prove the following theorem: 

Lemma 1.  
In the following simple lemma, 

 are computed. 

Lemma 2. and 

 

Proof. Since  the first part is trivial. 
For the proof of second part, we notice that every closed 
walk of length 4 in the dendrimer molecule D[n] 
constructed from one edge or a path of length 2. Therefore 
we must count the following type of sequences: 

 
a) v1v2v1v2v1; 
b) v1v2v3v2v1; 
c) v2v1v2v3v2. 

 
There are 6×2n+1 – 6 sequences of type (a), 12×N – 

36×2n sequences of type (b) and 3N-9×2n sequences of 
type (c), proving the second part of lemma.  

 
Lemma 3. . 
Proof. We apply a similar argument as Lemma 2 to 

count the number of closed walk of length 6 in D[n]. Such 
walks constructed from an edge, a path of length 2, a path 
of length 3, a star S4 or a hexagon. If vi's are distinct 
vertices of D[n] then we must count the sequences given in 
Table 1. In this table, we also give the number of walks in 
each case and we have , 
as desired.  

 
Lemma 4. . 
Proof. We count the number of closed walk of length 

8 in D[n]. In Table 2, we calculate this number for 
different types of walks. From this table, one can see that 

 proving the lemma. 
 

Lemma 5. . 
Proof. By counting the number of closed walks of 

length 10 in D[n] and Table 3, one can see that 

 
Theorem. There are real numbers C1, C2, …, Cn, -3 < 

Ci ≤ 3, such that the Estrada index of a dendrimer D[n] is 
computed as follows: 

EE(D[n]) = EE(D[n]) = n  

.  

Proof. The proof is follows from Lemmas 1−5 and 
Taylor's Theorem. 

 
Corollary. With the notation of main theorem, 

2n   < EE(Cn) < 

n    
 

 
Table 1. The walks of length 6. 

 
 

Type Sequence No 
A v1v2v1v2v1v2v1 12.2n−6 
B v1v2v1v2v3v2v1 42|V|-126.2n 
C v2v1v2v1v2v3v2 42|V|−126.2n 
D v1v2v3v4v3v2v1 60|V|−240.2n 
E v2v1v2v3v4v3v2 24|V| − 96.2n 
F v1v2v3v2v4v2v1 6|V| − 18.2n 
G v2v1v2v4v2v3v2 6|V| − 18.2n 

 

 
Table 2. The walks of length 8. 

 
 

Type Sequence No 
A v1v2v1v2v1v2v1v2v1 12.2n − 6 
B v1v2v1v2v3v2v3v2v1 42|V| − 126.2n 
C v2v1v2v3v2v3v2v1v2 42|V| − 126.2n 
D v1v2v1v2v3v2v4v2v1 60|V| − 240.2n 
E v2v1v2v1v2v3v2v4v2 120|V| − 480.2n 
F v1v2v1v2v3v2v4v2v1 36|V| − 108.2n 
G v2v1v2v1v2v3v2v4v2 36|V| − 108.2n 
H v1v2v3v4v5v4v3v2v1 24|V| − 108.2n 
I v2v1v2v3v4v5v4v3v2 48|V| − 216.2n 
J v3v2v1v2v3v4v5v2v3 24|V| − 108.2n 
K v1v2v3v4v3v5v3v2v1 12|V| − 48.2n 
L v2v1v2v3v4v3v5v3v2 24|V| − 96.2n 
M v3v2v1v2v3v4v3v5v3 36|V| − 144.2n−1 
N v4v3v5v3v2v1v2v3v4 24|V| − 96.2n 

 
 
 



Estrada index of dendrimers                                                                               55 
 

Table 3. The walks of length 10. 
 

Type Sequence No 
A v1v2v1v2v1v2v1v2v1v2v

1 

12.2n − 6 

B v1v2v1v2v3v2v3v2v1v2v
1 

90|V| − 270.2n 

C v2v1v2v3v2v3v2v1v2v1v
2 

90|V| − 270.2n 

D v1v2v1v2v3v2v3v4v2v2v
1 

216|V| − 864.2n 

E v2v1v2v1v2v3v2v3v4v3v
2 

540|V| - 2160.2n 

F v1v2v3v2v3v2v4v2v3v2v
1 

150|V| − 450.2n 

G v2v1v2v1v2v3v2v3v2v4v
2 

150|V| − 450.2n 

H v1v2v3v4v5v4v5v4v3v2v
1 

168|V| − 756.2n 

I v2v1v2v1v2v3v4v5v4v3v
2 

288|V| − 1296.2n 

J v3v2v1v2v3v4v5v4v3v4v
3 

192|V| − 864.2n 

K v1v2v3v4v3v4v3v5v3v2v
1 

96|V| − 384.2n 

L v2v1v2v1v2v3v4v3v5v3v
2 

360|V| − 480.2n 

M v3v2v1v2v3v4v3v5v3v4v
3 

216|V| − 864.2n−1 

N v4v3v4v3v5v3v2v1v2v3v
4 

240|V| − 960.2n 

O v1v2v3v4v5v6v5v4v3v2v
1 

48|V| − 240.2n 

P v2v1v2v3v4v5v6v5v4v3v
2 

96|V| − 4802n 

Q V3v2v1v2v3v4v5v6v5v4v
3 

96|V| − 480.2n 

R v1v2v3v4v5v4v6v4v3v2v
1 

24|V| − 108.2n 

S v2v1v2v3v4v5v4v6v4v3v
2 

48|V| − 216.2n 

T v3v2v1v2v3v4v5v4v6v4v
3 

48|V| − 216.2n 

U v4v3v2v1v2v3v4v5v4v6v
4 

72|V| − 324.2n 

V v5v4v6v4v3v2v1v2v3v4v
5 

48|V| − 216.2n 

W v1v2v3v6v3v4v5v4v3v2v
1 

48|V| − 192.2n 

X v2v1v2v3v4v5v4v3v6v3v
2 

72|V| − 216.2n 

Y v3v2v1v2v3v4v5v4v3v6v
3 

72|V| − 324.2n 

Z v6v3v4v5v4v3v2v1v2v3v
6 

24|V| − 108.2n 

AA v1v2v3v4v3v6v3v2v5v2v
1 

24|V| − 104.2n 

AB v2v1v2v3v4v3v6v3v2v5v
2 

72|V| − 216.2n 
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